↓ Expand ↓
» About This Blog

Battery Start-up Gets New Name

Liquid Metal Battery Corporation now has a new name – Ambri. I have to admit, since I track a number of cleantech start-ups, I had a fondness for LMBC partly because the name was so descriptive of the technology. It helps when my memory gets a little faulty.

The researcher and founder of Ambri, Donald Sadoway, is profiled in C&EN’s very recent cover package about Entrepreneurs in Chemistry. I enjoyed Sadoway’s story very much. As C&EN’s Amanda Yarnell points out in the story, though he is an expert in materials, Sadoway and his team are not experts in the battery industry. Their outside perspective helped the team come up with a cheaper method to store intermittent, renewable energy.

But I will miss the old name. The press release says Ambri comes from a snippet of Cambridge, home of MIT. Maybe Liquid Metal Battery Corp was considered too long, or perhaps too, er, sloshy?

Switchgrass Bait and Switch

Sometimes when you dig a little on Google News you find fascinating nuggets in local news of the topics that we cover here at C&EN. A great example is in Knoxville’s alternative newsweekly Metro Pulse.*

They grew the switchgrass. Now what? Credit: University of Tennessee

Newshound Joe Sullivan digs into what ever became of $70 million that the state of Tennessee spent in the flush days of 2007 to start up a switchgrass and cellulosic ethanol industry in the state.

The good news on the project is that the promised 250,000 gal per year cellulosic ethanol plant did open, in Vonore, Tennessee. The bad news is that it has not been using any of the switchgrass grown on 5,000 surrounding acres. The switchgrass part of the project involved the University of Tennessee Institute of Agriculture. The state figured switchgrass would grow great there. And it seems to have been correct.

Sullivan reports that more than half of the $70 million project money went to build the pilot plant. But corporate partner DuPont (now DuPont Cellulosic Ethanol) has used the pilot plant to test and demonstrate its ability to make ethanol from corn stover. Corn stover is a feedstock that is available in huge quantities…. in Iowa. As it happens, DuPont’s first commercial-scale cellulosic ethanol plant is in Nevada, Iowa, and is set to come online soon.

C&EN has mentioned the Vonore plant a half dozen times (including in a previous post on this blog). The move away from switchgrass escaped our attention, but it is an important development for the UT folks and the farmers they have been working with.

So what will happen to the 50,000 tons of switchgrass that were harvested by Vonore-area farmers? Read the story to find out.

* Edited 8/28 to correct reference to Metro Pulse

RFS Plagued by Critics While Bio-based Chemicals Move Forward

In the U.S., the push to increase the percentage of fuel that comes from bio-based feedstocks has turned into a tug of war. This year’s drought has re-invigorated the longtime “food versus fuels” debate that is now targeting the EPA’s Renewable Fuels Standard. Both the EPA and the USDA are working hard to hold the line on what is supposed to be a year-by-year increase in the amount of biofuels that go into the transportation fuels supply.

Big drought puts ethanol in doubt. Credit: USDA

When it comes to using corn for something other than food (i.e., animal feed), ethanol for transportation fuel is getting a big thumbs down from many quarters, while bio-based chemicals made from sugar is an endeavor that’s quietly moving right along.

This year, a projected lower corn harvest has alarmed many who keep a close eye on global food markets. The U.S. exports about 13% of its yearly corn harvest. Another third goes to animal feed, and between one-third and 40% is used to make ethanol. Many critics both in the U.S. and abroad are suggesting that the U.S. ease up on the amount of corn used in ethanol to prevent skyrocketing global food prices — of the kind that caused food riots in 2008.

Continue reading →

Metabolix: the Post-ADM Update

It’s been a very busy summer, but I had a chance to catch up with Rick Eno, the CEO of Metabolix, last week. Metabolix makes a bio-based plastic that it calls Mirel, though chemists call it a polyhydroxyalkanoate polymer (PHA). We last heard from Metabolix in January when its commercial-scale partnership with Archer Daniels Midland dissolved.

The breakup was a significant blow to the company in terms of growing its business and selling Mirel to customers. The partnership with ADM was based around an ADM-financed production plant capable of making 50,000 tons of Mirel per year. Unfortunately, sales ramped up slowly and ADM said the market was too risky.

Since the breakup, Metabolix has decided to launch the biodegradable Mirel bioplastic under its own nameplate, says Eno. It has transferred inventory from ADM, and brought over all the business operations. Still, the company needs a production partner.

“Since Mirel was exclusive to ADM for so long, [after the breakup] we did get inbound calls and we also reached out to potential partners to establish potential manufacturing,” Eno told C&EN. He says that rather than try to sell enough Mirel to keep a huge plant busy, he’s now looking for something closer to a 10,000 ton per year scale.

“We’ve narrowed down a large number of potential opportunities to four. Now we’re looking at engineering detail for integration of our manufacturing technology to the partners’ asset sets,” Eno reports. “We’re deeply evaluating a short list of manufacturing options.” Without ADM to center the business, Metabolix can look outside the U.S. – for example, to be closer to customers. In fact, the firm has opened a sales office in Cologne, Germany to be close to the European market.

As Alex Tullo wrote in his recent cover story on biodegradable plastics, an important market niche is in organic waste handling – specifically in municipalities where organic waste is separated and hauled to composting facilities. Eno suggests this is both a good niche for PHA, and also a great reason to be in Europe where people rigorously sort their trash.

Eno followed up on his January comments that the company would look to higher-value markets that really require biodegradability, rather than try to compete with cheap and plentiful petro-based plastics. He said the company is focusing on agriculture and horticultural markets – for things like biodegradable plastic mulch; the consumer market for compostable bags and similar products for organic waste diversion; a broader packaging market; and a marine and aquatic segment where it is important that plastics biodegrade fully in oceans and streams.

The breakup with ADM somewhat ironically boosted Metabolix’s cash position (for some rather complicated accounting reasons). That will be a big help, because the company is still developing its upcoming portfolio of bio-based C3 and C4 chemicals, using different PHA molecules than Mirel uses as an intermediate. Example target chemicals are gamma butyrolactone and acrylic acid. The C4 program is the farthest along and has reached 60,000 liter fermenters in scale-up. Eno says the chemicals program has netted “significant partner interest.”

Also helping to pay the bills is a government grant backing the company’s efforts to put the bio-based plastic platform into purpose-grown plants. In a recent advance, Metabolix and its research partners have reported a new way to increase polyhydroxybutyrate (PHB) production in sugar cane.

So there you have it – Metabolix is still moving along. The next time we will hear from them, Eno says, it will be because they have a new production partnership to announce. Stay tuned.

France to Ban Pesticide To Protect Honey Bees

French Agriculture Minister Stephane Le Foll said on Friday that the country plans to ban the use of a neonicotinoid pesticide used as a seed coating for the oil crop rapeseed, over concerns of its sub-lethal effects on honey bees, Reuters reports.

The Le Foll said his agency had investigated results reported in Science (see C&EN’s coverage by Lisa Wilson) that suggested bee behavoir was altered when bees were exposed to neonicotinoids as they foraged for nectar. Results from that research and others reviewed by the French agency for food, environmental and occupational safety showed sub-lethal effects that caused bees to not return to the hive, a behavoir that could weaken bee colonies. The agency issued a release about its findings – in English – which you can read here.

As a result, France now plans to withdraw the permit for Syngenta’s Cruiser OSR pesticide, when used as a seed coating for rapeseed. Cruiser includes one type of neonicotinoid called thiamethoxam. The rapeseed flower produces nectar that is harvested by honey bees.  It is one route of exposure that recent research has investigated.

As C&EN and the Cleantech Chemistry blog have reported, research on possible causes for widespread collapse of honey bees – both in the U.S. and Europe – is ongoing. Neonicotinoid pesticides have been a focus of some of the research, as have parasites, viruses, and various modern agricultural practices such as monocultures.

The move by France has brought responses from the EU, Syngenta, and the European Crop Protection Association. These groups acknowledge that research shows that bees are negatively affected by neonicotinoids but they say the manner of exposure and the likely amount of exposure is likely much lower than what has been tested. Meanwhile, France has asked the EU to add tests for sub-lethal impacts on bees to its protocol for approving the use of pesticides.


Our Favorite Toxic Chemical: Nitrate

Today’s post is from guest blogger Melissae Fellet, a science writer based in Santa Cruz, California, and was written for the “Our Favorite Toxic Chemicals” blog carnival hosted by Sciencegeist.

Feeding my vegetable garden so it will feed me

I’m eager to grow some of my own food this summer, so I planted a vegetable garden in pots on my porch. Since my previous gardening experience consists of ignoring my plants, learning some gardening tips was a must.

I hope my plants look this healthy in a few weeks! (Image by flickr user despi88)

Like humans, plants need food, too. Those nutrients come from boosts of nitrogen, phosphorus and potassium-containing fertilizer. But plants need help getting their roots on some nutritious nitrogen when that fertilizer contains kelp, alfalfa, crushed bones, chicken poop and ground feathers, like the organic stuff I put in my garden.

Some of those ingredients contain nitrogen as ammonia, which plants can absorb directly. Proteins are another source of nitrogen. Bacteria in the soil separate proteins into amino acids. Other microbes chomp the nitrogen off the amino acids as ammonia. And super-specialized bacteria eat ammonia and release the nitrogen as nitrate (NO3-). Nitrate is great plant food, too, because it zips through the soil straight to a plant’s roots.

This biological nitrogen transformation is slow, so farmers may feed their plants a nitrate-containing fertilizer to speed growth. That’s a touchy subject in the agricultural areas near my home in California.

About 10 percent of 2500 public water wells tested in the Tulare Valley and Salinas Valley exceed the state limits of 45 mg nitrate per liter of water, according to a report prepared for the state water department last March. The majority of the nitrate in groundwater — about 96% — washes off cropland, the report found.

Nitrate takes time to trickle from a field into the groundwater, so most of that contamination is due to decades of past farming in the area. But if the nutrient pollution trend continues, 80% of the people living in those valleys could be drinking nitrate-laden water by 2050.

Nitrate becomes harmful when our bodies convert it to its chemical cousin, nitrite (NO2-). Nitrite transforms the iron in our blood so that it can no longer carry oxygen. Enough altered iron — 10 percent of the hemoglobin in your blood — causes breathing troubles especially in infants and pregnant women. Higher concentrations can lead to suffocation.

Still, it takes a lot of nitrate to harm a person. According to data from the World Health Organization [PDF], an average three-month old baby boy might have to drink about four liters of water contaminated with nitrate at twice the state limit to induce toxicity. An adult might drink up to 56 liters of the same water at once to get a fatal dose of nitrate.

Excess nitrate can be toxic to the environment, too. The nutrient washes into a Central Coast wetland, feeding microscopic algae until they grow into thick green mats that suffocate ponds and channels.

The UC Davis report says that fertilizer fees and improved groundwater monitoring can help protect drinking water. And policy changes are in the works for one part of the state. In March, the Central Coast Regional Water Control Board passed regulations to reduce nitrate-containing runoff from fields. These rules took three years to negotiate and they are still tangled in a lawsuit from growers.

Even without regulations, farmers can prevent nitrogen pollution by controlling the amount of fertilizer on the fields and feeding plants only what they can absorb. The state report also suggests using nitrate-laden ground water for irrigation. Plants absorb the nitrate from the water, and clean water returns to the aquifer.

Lacking a home nitrate test kit for my garden, I’ll choose organic fertilizer when it comes time to feed my plants again. That should give my plants a slow drip of nitrogen and hopefully prevent a build up of excess nutrients. I feed my plants nitrogen so they’ll be strong and healthy enough to produce food for me.

Bring on the orange carrots, yellow peppers and purple beans!

The Money in Dirt

Cleantech firms are sometimes criticized for pie in the sky thinking. Harvest Power, though, looks like a pretty down to earth company. It makes dirt*. Mind you, this is high quality dirt*.

Compost. Black Gold? Credit: Harvest Power

Late last week, Harvest Power said it had raised $110 million in a third round of venture capital funding. That’s a tidy sum for a messy business. Harvest is an industry that some call “organics management.” According to the firm’s website, it works at a community level to gather and re-use organic materials (food waste, lawn clippings, pieces of lumber). It produces mulches, organic fertilizer, and soil products using composting and anareobic digestion.

These technologies are not exactly new. But it seems that the value is in its system approach and its facilities. Harvest ties into local communities where organic materials are separated from the waste stream. In addition to recyling the waste into soil-related products – which it sells to local farmers and gardeners - its digestors produce renewable energy from biogas.

The biogas is used in combined heat and power plants, exported as pipeline-grade (i.e. purified methane) natural gas, or compressed gas to be used for transportation. High heat content materials like wood chips are also processed into fuel for use in industrial boilers.

According to PrivCo, a firm that tracks the finances of privately-held companies, Harvest can boast significant revenues (this contrasts the firm with some cleantech plays that go public before making any money from sales). Founded in 2008, it made close to $50 million last year and is expected to rake in $75-$100 million in 2012.

The financing will be used by the company to expand its reach. PrivCo reports Harvest is finishing two Canadian energy plants and has plans for waste to energy facilities in New Jersey and Florida.

* [update] Harvest actually produces soil, as The Phytophactor points out in his comment.



Hitting Pause on BPA

Last Friday morning I was looking for news about the FDA decision on bisphenol A (BPA) - a court mandated answer to a petition from the Natural Resources Defense Council. On my way to a Forbes blog entry on the topic, I was first confronted with Forbes’ randomly generated quote of the day:

“Life, as it is called, is for most of us one long postponement. ”— Henry Miller

Of course, as my colleague Britt Erickson details in her news story, FDA has opted not to ban BPA, saying the research submitted by NRDC wasn’t compelling enough. The agency, however, has gotten in deep with it’s own research and it says this is not the last word on the substance.

I’ve looked into the use of BPA in canned foods, and the dearth of adequate substitutes that protect cans from food, and vice versa. Erickson reports that packaging makers are still working very hard to find alternative technologies for can coatings. They are getting requests from their customers – food makers – who are themselves being pressured by consumers and by some shareholder groups to remove BPA.

The shareholder activist group As You Sow has been asking canned food brands to disclose how they are dealing with BPA in their products. They have also proposed shareholder resolutions to get companies to stop using cash register receipts coated with BPA. Actions by the group and others seem to have had some effect – most major brands like Campbell Soup are now talking about what they are doing, and are at least phasing out their use of BPA. Yum Brands and Walmart are two firms that no longer use BPA register receipts.

As You Sow CEO Andrew Behar says his group is meeting to discuss its strategy about BPA in the wake of the decision (non-decision?) by FDA. He says that consumer and investor pressure on the issue is not going to abate. “It’s far from over. This is a momentary pause to get some science done,” Behar says. As You Sow believes that BPA is indeed dangerous to humans, but Behar emphasizes that science needs to address the effects of small doses since BPA is an endocrine disruptor. Human exposure and downstream effects on unborn children as they grow up are also important research topics, he adds.


Two Weeks of Bee News

It has been a busy spring season for bee research. Last week, C&EN ran a news story about field research suggesting a link between pestides used in seed treatments and honeybee deaths. And C&EN’s Elizabeth Wilson has reported on two new studies that show that exposure to pesticides may interfere with the hive health of both honeybees and bumblebees.

The pesticides are from the neonicotinoid family, and include clothianidin and imidacloprid. Their use as seed treatments actually reduces the need to spray incecticides on to the plant’s leaves. Instead, small doses in a seed coating confer systemic protection to the plant as it grows. (Formulations of the products may also be used as foliar sprays).

The question that these studies are trying to explore is whether, and to what extent, use of neonicidinoids contribute to massive die-offs of bees, commonly called Colony Collapse Disorder.

In Europe, Italy, Germany, and France have placed restrictions – some are temporary – on the use of neonicitinoids in agriculture. The rules vary widely by country. Earlier this month beekeepers and environmentalists in the U.S. petitioned EPA to ban the use of clothianidin.


iPad: Pushing the Limits of Materials

In addition to the famed design sense and technological know-how that make the iPad possible, Apple also must call in some key material innovations to fit all that fun into such a small package.

In this week’s issue of C&EN, I talk to the companies that make materials for today’s hot mobile devices and their sleek touch screens. Like Corning’s Gorilla Glass. And I show how surface chemistry‘s contributions to making better consumer goods is spreading to other categories including sneakers, make-up, house paint, and new LED light bulbs.

The new iPad, with its 4G internet speeds and energy hogging retina display, is also pushing the limits on battery materials. It is a bit thicker and heavier than the first version, mainly due to needing a larger battery. In a guest post on a Forbes Tech blog aimed at executives, Noam Kedem, VP of marketing for

Leyden Energy, says that the new iPad’s need for more power also makes it run hotter, and also is the reason it takes longer to recharge the battery. Heat, and irreversible chemical changes over a battery’s lifespan, are major materials problems for lithium ion batteries, he writes.

Leyden Energy is a Calif.-based firm has developed a new electrolyte chemistry for batteries that the company claims will help to fix the heat/degradation process. Almost all consumer rechargeable li-ion batteries use LiPF6 as their electrolyte; Leyden is working with a chemistry based on lithium imide. According to the firm, lithium imide makes batteries much less temperature sensitive.

I hope that Apple’s engineers have seen this week’s lead news story by my colleague Mitch Jacoby on research that tantalizingly suggests new chemistry for “low-cost batteries with greater capacity and longevity than today’s commercial Li-ion batteries.” In this case, it is not the electrolyte but rather the anode that has been improved. In research published in the ACS Journal NanoLetters, Pacific Northwest National Laboratory scientists were able to make anodes of silicon-carbon nanocomposite. Li-ion battery anodes are normally made of carbon.

Past efforts to make silicon anodes ran into problems; during charging, they swell to three times their size. In addition to making a more stable version, the PNNL folks found the resulting battery “exhibited a charge capacity more than five times as great as that of conventional carbon anodes.” Wooo! That’s a lot more YouTube on the ol’ iPad. The story comes complete with descriptive photos and a video of the anode undergoing the charging process.

[3/27/2012 - updated to reflect that Leyden "has developed" and add corrected "imide"]

From The GlobCasino Blogs