↓ Expand ↓

Cleantech Chemistry

» About This Blog

Category → Manufacturing

Giant Gobs of Algae Coming From Solazyme

Starting soon, oil-producing algae will be replicating at B-horror-movie quantities. Imagine a lab coat-wearing scientist running into the street shouting “300,000 metric tons!” while scores of screaming people run by, pursued by a giant wave of green slime.

But be not worried, the algae in question will be safely confined to fermentation tanks thanks their overlords at Solazyme. And many of those tanks will be in Brazil (so the people would be screaming in Portuguese, I guess.)

Earlier this week, Solazyme says that it has agreed with its sugar-producing partner Bunge to increase the production capacity for algal oils from an original 100,000 metric ton amount to 300,000 metric tons. It seems from the press release that Bunge will have a hand in marketing the tailored oils to the edible oil market in Brazil.

If you happen to live in the U.S. and have a craving for oil derived from algae, you’ll be pleased to learn that another large blob will be coming to Clinton, Iowa, starting in early 2014. Solazyme and its little green workers plan to ooze into the idle Archer Daniels Midland plant formerly occupied by Metabolix’s bioplastics operation. The plant will start out making 20,000 metric tons, but aims to grow to 100,000 metric tons.

 

Moving to Missoula: Rivertop’s new CEO

The cleantech industry is taking executives to some interesting places lately.

Earlier this month, renewable chemicals firm Rivertop Renewables, based in Missoula, Mont., named Michael J. Knauf as Chief Executive Officer. Mike Knauf is a 30-year veteran of the bioindustrial industry, having held executive level positions with Genencor and Codexis.

Rivertop makes chemical intermediates through oxidation of sugar feedstocks. Its first platform of products is based on glucaric acid. On Oct. 26, the company opened its new labs and semi-works facility in Missoula.

Cleantech Chemistry spoke with Knauf about his new job, and Rivertop’s future plans.

CC: What attracted you to Rivertop?

MJK: Rivertop is a startup with a promising future. Codexis had moved past start-up mode and was starting to form up as a company with products and services and a revenue line. This is a pre-revenue opportunity –  it builds on a solid breakthrough technology and was built by a great group of people. It couldn’t be a better opportunity for someone like me – a seasoned – in Montana they might say, grizzled, veteran. It’s really a great fit. I’m hoping my skill set will be what this company needs to propel it forward beyond startup phase.

My mantra is always listen to your customer. We’re are in the process of developing our market strategy – we’ve been talking to customers to really understand their needs. This company’s technology was originally applied to a market pull; a company was looking for a unique polymer and our founder identified glucaric acid polymers to meet their need.  Our  platform product is glucaric acid and other sugar acids generally broaden the range of applications for the company. The fact that Rivertop was founded on a market need is the key.

CC: What was it like to move to Missoula from San Francisco?

MJK: It’s funny – on a personal note I grew up in a town almost exactly the same size as Missoula. You’ve heard of it – Green Bay Wisconsin, but now Green Bay is maybe three times the size of Missoula today. My wife and I grew up in the same town.  We’re so excited to be part of this community. It has a great quality of life and lots of nature. The University of Montana is in Missoula and provides a tremendous amount of cultural richness you wouldn’t find in towns this size everywhere. It’s just plain beautiful. And no, we’re not worried about winter.

And the home we’ve purchased – well, there’s no stoplight between our home and the Rivertop offices and labs. When you’re from the Bay Area… that puts a big smile on my face.

CC: What are your plans for growth – production, product line, partners …?

MJK: So far, we’ve shipped product to a number of customers but we are not in full launch mode. We’ve been producing for customer testing. I’ve just started so I don’t have all the answers all right now. The plans are to continue with our product and market development. In some cases that will take us to partnerships and collaborations – with consumer product companies, chemical companies, and potential manufacturing partners too. We’re working on a detailed strategy that we will roll out when it’s formed up.

One aspect is different that I’m happy to talk about. When it comes to Rivertop versus other companies in the renewable chemicals space, our technology is based on chemistry rather than biology. The R&D timeline and manufacturing cost of capital is considerably less problematic. Biology takes time, chemistry is usually pretty quick. With biology you have to develop the microbe, along with all the aspects of fermentation and recovery of the product. Our chemical process development has been quick, and is well developed for a number of applications; it is a platform chemistry.

We’ll ultimately produce more than glucaric acid, though glucaric acid is a good example of an oxidized sugar with a number of promising applications. It was on the DOE’s original list of biomass derived chemical targets. It’s a platform chemical we can develop with our platform chemistry.

Our primary market opportunity for glucaric acid is the detergent market, which has many applications of interest to Rivertop. Glucaric acid-derived products have long been considered as potential builders for dish and laundry products. With product reformulations, such as to remove phosphates, the detergents can be made more sustainable and better performing – and that plays right into our strengths.

The other markets we are looking at begin with corrosion inhibition for deicing applications. That is an area the team found early on and is fairly far along, we are shipping product to transportation departments in the Mountain states, including Montana.

Right now this new guy says the sky’s the limit, but we have to focus on some particular opportunities.

A123 Systems Files Chapter 11, Johnson Controls to Buy Assets

It looks like it’s pretty much all over for A123 Systems. The advanced battery company announced today that it would file for Chapter 11 bankruptcy in order to reorganize its debts. Johnson Controls, which also makes large-format lithium ion batteries for the auto industry, will purchase facilities and other assets for $125 million. A123 was earlier mulling an offer to sell itself to Chinese auto part maker Wanxiang Group.

A123 Systems makes advanced lithium ion batteries. Credit: A123 Systems

A123 was one of a host of battery, battery materials, and electric drivetrain companies to receive government money as part of the Recovery Act. The goal was to set up a full manufacturing supply chain to for U.S.-made advanced batteries. Those batteries were intended to go into U.S.-made electric vehicles. A123 received $249 million in government grants. It also has shareholders, who will likely lose their investment in the re-org.

Overall, Recovery Act funding for the advanced battery industry totalled $2 billion. A123 Systems stood out – and was most vulnerable to market forces – because it was a tech-driven, pure-play battery company. Unlike Dow Kokam, or Johnson Controls, it has no deep pocketed parent or additional technologies and markets to sell into. (A123 will license back techology for batteries used for stationary storage).

And the market A123 sells into is the hyper-oversupplied market for electric car batteries. As we’ve mentioned recently in this blog, electric cars are selling very, very slowly. A recent article in MIT’s Technology Review says battery production capacity in 2013 will greatly outpace demand with 3,900 MW hours of capacity to serve 330 MW of demand, based on estimates from Menahem Anderman at the consulting firm Advanced Automotive Batteries. Needless to say, many production lines are sitting idle at the moment.

When A123 was still a young firm, it was selling batteries for power tools to Black & Decker. Indeed, when it went public its S1 filing was based on that partnership. The company certainly had its sights set on what was to be a huge automotive market.

But one has to wonder, what would have happened if A123 hadn’t received the “free” money? What if it hadn’t been swept into the government’s big plans to create a new advanced manufacturing industry from nothing?

LanzaTech: Now experimenting with CO2

It’s not too often that I get a press release with a New Zealand embargo time. Waste gas to fuels and chemicals firm LanzaTech got its start in New Zealand, but is currently headquartered in Illinois. Still, the company’s larger projects are all in Asia, and being on the opposite side of the world from Cleantech Chemistry blog HQ is not a problem for them.

Yesterday (which is today in New Zealand), LanzaTech CEO Jennifer Holmgren spoke to a conference of oil refiners in New Delhi. In her remarks, she announced that the firm has a new joint development agreement with Malaysia’s national oil company Petronas.

The two firms will work to produce chemicals from carbon dioxide – the first one being acetic acid. LanzaTech already has two facilities that make ethanol from CO. In all cases, the CO or CO2 comes from waste gases. LanzaTech’s proprietary microbes ferment the gas into various end products. The Petronas deal will get its CO2 from refinery off gases and natural gas wells.

Earlier this year, the venture arm of Petronas contributed to LanzaTech’s third round of venture funding. And it seems the two companies have been in cahoots ever since.

C&EN profiled LanzaTech this summer.

And there is another cleantech firm that aims to make acetic acid – Zeachem. Zeachem is building out its plant that will produce acetic acid – as well as ethanol – from hybrid poplar grown in Oregon.

A Graphic Illustration of the Target on the Back of the Chemical Industry

Several days ago I received an e-mail from the press office (press person?) at the Energy Information Administration (EIA). At the time I looked at it, thought “hmm… interesting” and set it aside. Been thinking about it off and on since. The crux of the information was this graphic:

 

 

 

 

 

 

 

 

 

 

 

 

A few thoughts that came to mind immediately were 1) Wow, look what a monster recession did to our industrial energy consumption and 2) That brick-colored stripe is rather tall.

The other two categories of energy consumers aside from industry are residential (people at home), commercial (businesses) and transportation. In 2011, industry was responsible for over 30% of total energy consumption, according to the EIA. Transportation is approximately a similar amount, and residential and commercial users split the rest.

The more I thought about it, though, the more I reflected on basic chemicals’ place in the lifecycle of a finished good – maybe a shampoo, or a carpet or a car – and the chunk of energy use it represents. A branded goods manufacturer that does a lifecycle analysis – say to measure energy use or emissions – would no doubt zero in on chemical inputs as a large contributor to its overall footprint.

Of course, mining and agriculture have their own energy footprints, as shown in the graphic. Obtaining any raw material will bring energy baggage with it.

The graphic also reinforced a message that my C&EN colleague Alex Scott recently wrote about in the magazine. He attended an event in Brussels called the Global Chemical Industry Sustainability Summit. In his report, he writes that chemical industry representatives were chided for their “business-as-usual model” and told that other industries, including customers of the chemical industry, were beginning a trek toward zero targets for things like oil use and CO2 emissions. Should someone hold a similar event in the U.S., this illustration might appear in the presentation.

 

SoloPower, Gevo: Can a capital-light strategy save cleantech?

I wish I could be in Portland, Oregon today to watch SoloPower start up its first production line of thin film CIGS solar panels. The company says it can manufacture in a continuous process to make its solar material in strips as long as one mile.

The company asserts that its thin, flexible modules are a good fit for building-integrated solar, especially in locations where heavier, traditional glass panels cannot be installed such as on warehouse roofs. The modules are certified to an efficiency rate of 9.7 to 12.7%.

But it’s not so much the technology itself that is interesting, but rather SoloPower’s business model and whether it can succeed in selling what it admits is a premium-priced product while the traditional silicon modules continue to drop in price, taking down many efficient producers with them.

SoloPower is already having to bear up under scrutiny because it will be able to tap into almost $200 million in DOE loan guarantees, under the same program that was behind the Solyndra kerfuffle. NPR did a nice job this morning interrogating SoloPower CEO Tim Harris. Read or listen to the short piece here.

NPR rightly points out that Solyndra was backed by $1 billion in private funding and accessed half a billion dollars in its own DOE loan before going bankrupt. But SoloPower doesn’t have a billion bucks to lose, and perhaps that is a good thing.

Instead of comparing SoloPower to Solyndra I’d like to compare it to Gevo, a maker of biobased isobutyl alcohol (what it calls isobutanol). Both firms are pursuing a capital-light strategy.

SoloPower’s first production line will have a small eventual annual capacity of 100 MW. So far, it has spent only its own investors’ dollars. Gevo, a now public company, is spending somewhere around 25% to one-third the cost of a new fermentation plant by converting existing corn ethanol plants.

When a company that has a technology without a track record wants to build its first large plant, it faces financing risk on top of technology risk. Range Fuels built a shiny new plant in Georgia to make ethanol from wood chips. But since the technology did not work upon start-up, Range could not pay its monthly loan overhead, and the factory was repossessed by its financing bank and sold at auction (Range also had a DOE loan guarantee).

Early this week, Gevo told investors that it had stopped making isobutyl alcohol at its facility in Luverne, Minnesota. Instead, it turned the switch back to ethanol. Gevo’s plan to convert an ethanol plant in Redmond, South Dakota is on hold. The company said though it successfully made isobutyl alcohol in Luverne, to reach its target run rate would require more work. Meanwhile, both locations can still produce ethanol.

Though Gevo’s investors weren’t happy with this news, Gevo has given itself plenty of time to fix its problems, saying it would reach its target run rate in 2013 (it could take a year and still make this deadline).

Reducing a company’s financing risk doesn’t do much to reduce its technology risk – or in SoloPower’s case, its market risk – in either the short or long term. But it may help a company last beyond just the short term. Given the pitfalls of technology scale-up, that could make all the difference.

And More Coming in Biobased Chemicals

I’m very pleased my story about biobased chemicals commercialization occupies this week’s cover, not because it sports a lovely image of poplar trees but because it’s Rudy Baum’s last official issue as Editor In Chief. Not that he’d ever toss his back issues of C&EN, but if he ever decided to clean out his home office I know he’d sure keep the Sept. 17 issue.

Anyway, I’m already off topic – sorry about that. The biobased chemicals story was fun to write because it’s a nice change of pace from the normal “experts say commercialization will take five to 10 years” concept. This one features actual photos of actual facilities making actual stuff.

One thing that is an issue in tracking this industry, and is only hinted at in the story, is that any report of upcoming capacity is based on company announcements, and there are promising product areas that just aren’t at that stage yet. (while some announcements may be a bit … premature). Luckily the wonderful C&EN online team made up a Google Map which I can update periodically.

Biobased acrylic acid is one product area that is not yet at the commercial announcements phase. OPX Bio and partner Dow recently presented an update on their two track effort towards scale up and commercialization. You can examine the details on the OPX Blog. And we’ll certainly be watching the BASF, Cargill, Novozymes effort.

I’d love to hear your thoughts about what else should appear on the map – whether it’s happening now or soon. Put it in the comments section or drop me an e-mail .

 

Algae Ponds: the lovers and the haters

This week’s issue of C&EN includes some news from algae-based biofuels firm Sapphire Energy. The company is reporting its first harvests of algae biomass from a large, outdoor algae farm in New Mexico.

Sapphire’s outdoor raceway ponds in New Mexico. Source: Sapphire Energy

Sapphire has grown and gathered 21 million gallons of algae biomass totaling 81 tons. Eventually, the plan is to make a kind of crude oil from the algae. They grow the stuff in very large outdoor ponds. According to the press release, “the cultivation area consists of some of the largest algae ponds ever built with groupings of 1.1 acre and 2.2 acre ponds which are 1/8 of a mile long.”

You’d think that the promoters of algae for biofuels would be clinking glasses filled with spirulina-enhanced juice at the news. But you’d be wrong.

In fact, a trade group of algae firms calling itself the National Algae Association says the kind of ponds used by Sapphire – known as raceway ponds (you can see why looking at this image) – will not scale up commercially. Instead the NAA supports the development of photobioreactors (PBRs for short). Similarly, algae researcher Jonathan Trent, writing in a New Scientist magazine piece that also appears in Slate is arguing in favor of photobioreactors. Specifically, Trent says PBRs should be deployed offshore. I’ll quote from his article where he summarizes the raceway/PBR tradeoffs:

There remains the question of how and where to grow the algae. A few species are cultivated commercially on a small scale, in shallow channels called raceways or in enclosures called photobioreactors (PBRs). Raceways are relatively inexpensive, but need flat land, have lower yields than PBRs and problems with contamination and water loss from evaporation. PBRs have no problems with contamination or evaporation, but algae need light, and where there is light, there is heat: A sealed PBR will cook, rather than grow, algae. And mixing, circulating, and cleaning problems send costs sky high.

Trent doesn’t mention what industry analysts complain about the most. When it comes to algae, though PBRs might be the best bet, they require too much capital expenditure for the equipment.

Meanwhile, Solazyme, which started life as an algal fuels firm but now is manufacturing oils for use in skin cream and other high value applications, grows its algae in a third way – its algae live in bioreactors, but in the dark. They eat sugar and make oil. Is there a best way to commercialize algae for fuels and chemicals? Is there any way? It seems that it is still too early to tell.

Switchgrass Bait and Switch

Sometimes when you dig a little on Google News you find fascinating nuggets in local news of the topics that we cover here at C&EN. A great example is in Knoxville’s alternative newsweekly Metro Pulse.*

They grew the switchgrass. Now what? Credit: University of Tennessee

Newshound Joe Sullivan digs into what ever became of $70 million that the state of Tennessee spent in the flush days of 2007 to start up a switchgrass and cellulosic ethanol industry in the state.

The good news on the project is that the promised 250,000 gal per year cellulosic ethanol plant did open, in Vonore, Tennessee. The bad news is that it has not been using any of the switchgrass grown on 5,000 surrounding acres. The switchgrass part of the project involved the University of Tennessee Institute of Agriculture. The state figured switchgrass would grow great there. And it seems to have been correct.

Sullivan reports that more than half of the $70 million project money went to build the pilot plant. But corporate partner DuPont (now DuPont Cellulosic Ethanol) has used the pilot plant to test and demonstrate its ability to make ethanol from corn stover. Corn stover is a feedstock that is available in huge quantities…. in Iowa. As it happens, DuPont’s first commercial-scale cellulosic ethanol plant is in Nevada, Iowa, and is set to come online soon.

C&EN has mentioned the Vonore plant a half dozen times (including in a previous post on this blog). The move away from switchgrass escaped our attention, but it is an important development for the UT folks and the farmers they have been working with.

So what will happen to the 50,000 tons of switchgrass that were harvested by Vonore-area farmers? Read the story to find out.

* Edited 8/28 to correct reference to Metro Pulse

Metabolix: the Post-ADM Update

It’s been a very busy summer, but I had a chance to catch up with Rick Eno, the CEO of Metabolix, last week. Metabolix makes a bio-based plastic that it calls Mirel, though chemists call it a polyhydroxyalkanoate polymer (PHA). We last heard from Metabolix in January when its commercial-scale partnership with Archer Daniels Midland dissolved.

The breakup was a significant blow to the company in terms of growing its business and selling Mirel to customers. The partnership with ADM was based around an ADM-financed production plant capable of making 50,000 tons of Mirel per year. Unfortunately, sales ramped up slowly and ADM said the market was too risky.

Since the breakup, Metabolix has decided to launch the biodegradable Mirel bioplastic under its own nameplate, says Eno. It has transferred inventory from ADM, and brought over all the business operations. Still, the company needs a production partner.

“Since Mirel was exclusive to ADM for so long, [after the breakup] we did get inbound calls and we also reached out to potential partners to establish potential manufacturing,” Eno told C&EN. He says that rather than try to sell enough Mirel to keep a huge plant busy, he’s now looking for something closer to a 10,000 ton per year scale.

“We’ve narrowed down a large number of potential opportunities to four. Now we’re looking at engineering detail for integration of our manufacturing technology to the partners’ asset sets,” Eno reports. “We’re deeply evaluating a short list of manufacturing options.” Without ADM to center the business, Metabolix can look outside the U.S. – for example, to be closer to customers. In fact, the firm has opened a sales office in Cologne, Germany to be close to the European market.

As Alex Tullo wrote in his recent cover story on biodegradable plastics, an important market niche is in organic waste handling – specifically in municipalities where organic waste is separated and hauled to composting facilities. Eno suggests this is both a good niche for PHA, and also a great reason to be in Europe where people rigorously sort their trash.

Eno followed up on his January comments that the company would look to higher-value markets that really require biodegradability, rather than try to compete with cheap and plentiful petro-based plastics. He said the company is focusing on agriculture and horticultural markets – for things like biodegradable plastic mulch; the consumer market for compostable bags and similar products for organic waste diversion; a broader packaging market; and a marine and aquatic segment where it is important that plastics biodegrade fully in oceans and streams.

The breakup with ADM somewhat ironically boosted Metabolix’s cash position (for some rather complicated accounting reasons). That will be a big help, because the company is still developing its upcoming portfolio of bio-based C3 and C4 chemicals, using different PHA molecules than Mirel uses as an intermediate. Example target chemicals are gamma butyrolactone and acrylic acid. The C4 program is the farthest along and has reached 60,000 liter fermenters in scale-up. Eno says the chemicals program has netted “significant partner interest.”

Also helping to pay the bills is a government grant backing the company’s efforts to put the bio-based plastic platform into purpose-grown plants. In a recent advance, Metabolix and its research partners have reported a new way to increase polyhydroxybutyrate (PHB) production in sugar cane.

So there you have it – Metabolix is still moving along. The next time we will hear from them, Eno says, it will be because they have a new production partnership to announce. Stay tuned.