↓ Expand ↓

Cleantech Chemistry

» About This Blog

Archive → Author

Rivertop Makes Montana a Magnet

This dispatch from the American Cleaning Institute show is a guest post by Mike McCoy. Thanks Mike!

John Monks is moving to Montana.
That’s one of several changes precipitated by an impending round of funding for Rivertop Renewables, a biobased chemicals company headquartered in Missoula, Mont.

Monks has been Rivertop’s vice president of business development since May 2013. He came to the startup following stints at two larger industrial biotech firms, Genencor and DSM.

Monks and his wife now live in the Chicago area, but the pending infusion of venture capital will put Rivertop on solid financial footing, he says, and prepare it for life as a going commercial operation. Monks needs to be in Missoula to help make it happen.

Rivertop produces chemicals from biomass. What separates it from the firms Monks used to work for is that the conversion is carried out not by fermentation but via a chemical synthesis, in this case a carbohydrate oxidation developed by Donald E. Kiely, a University of Montana emeritus chemistry professor.

Glucaric acid made from glucose is Rivertop’s first product. Monks was at the American Cleaning Institute’s annual meeting in Orlando, Fla., last week to promote the chemical as a raw material for the detergents industry.

Rivertop says glucaric acid is a chelating agent that works almost as well as sodium tripolyphosphate did in laundry detergents and automatic dishwasher detergents. Phosphates were legislated out of U.S. laundry detergents decades ago and out of dishwasher detergents in 2010.

Detergent makers have come up with phosphate replacements, but they tend to be expensive or otherwise flawed. Monks says manufacturers are receptive to the idea of an efficacious and cost-effective alternative.

At present, Rivertop’s glucaric acid is being toll-produced by DTI, a contract manufacturer in Danville, Va., that can turn out about 8 million lb of the chemical per year. Although Monks won’t disclose more about the financing until it is completely nailed down in the next month or two, he does say the additional cash will allow output to increase further. Moreover, it should set Rivertop on a path to build its own commercial-scale glucaric acid facility, likely in cooperation with a partner.

Another thing the cash will do is allow Rivertop to double its workforce in Missoula from the present staff of 18. Monks is looking forward to his move to Montana, but he acknowledges that the location might not appeal to everyone. “Flying in and out of Missoula isn’t the easiest thing to do,” he says.

Taking out the Trash

Where I live, I have to pay for each bag of household waste picked up by the trash man. Each bag gets a sticker, and every so often I purchase a sheet of stickers for a not inconsiderable amount of money.

Abengoa's municipal-waste to biofuel plant in Spain

Abengoa’s municipal-waste to biofuel plant in Spain. Credit: Abengoa

Luckily, I recycle and compost, and so my actual trash output is minimal.

Still, whatever volume of garbage I produce is a liability on the household balance sheet. Meanwhile, in the biobased/renewables economy, any source of unused carbon can be an asset if handled properly. And so I’m a bit surprised that I did not take note of one important cleantech project that came online in 2013: Abengoa‘s municipal solid waste-to-ethanol plant in Salamanca, Spain.

Thanks go to Jim Lane from Biofuels Digest for describing the facility in his Bioeconomy Achievement Awards post. In my defense, I have heard of  and followed the other projects that made his list.

The biofuel facility was inaugurated in June – and judging from the press release I imagine that Abengoa workers are busy adjusting it and scaling it up. It has an eventual capacity to take in 25,000 tons of municipal solid waste and produce about 400,000 gal of ethanol per year. That is a great deal of ethanol – much closer in output to a Midwestern corn ethanol plant than any advanced biofuel plant I’ve come across.

The secondary benefit of course, besides fuel, is that the amount of waste is reduced by 80%, with only the remainder going to a landfill.

In addition to scale, the other striking feature of the plant is that it uses a fermentation and enzymatic hydrolysis process to get at the carbon inside the cellulose and hemicellulose fraction of waste. Other waste to fuels plants (like Enerkem’s in Alberta) use more physical/chemical processes such as gasification or pyrolysis and inorganic catalysts.

Generally the stated benefits of the thermo-chemical routes are that all carbon-based inputs (i.e., old tires, plastics – you name it) are converted. But whether this distinction is important is questionable. For example, even gasification projects require upfront sorting and shredding of trash.

Perhaps someday when I put out my trash, rather than paying for the privilege, I’ll get paid instead.

Genomatica Partners up the Slope of Enlightenment

This has been a big season for biobased chemicals firm Genomatica. In late November, BASF announced that it used the company’s engineered microbe fermentation technology to scale up renewable production of 1,4 butanediol (BDO). And earlier this week, Genomatica announced a new partnership with Brazil’s Braskem to begin manufacture of biobased butadiene, starting with a pilot plant.

Genomatica's biobased butadiene.

Genomatica’s biobased butadiene.

“We’re tremendously excited,” said Genomatica CEO Christophe Schilling yesterday, in a chat with Cleantech Chemistry. “We’re positioning ourselves to get to this point – for many years we’ve viewed ourselves as the partner for the chemical industry when it comes to using biotechnology as a way to make chemicals. Not just for BDO or butadiene but for a broad range of chemicals.”

But we at the blog have noticed that these days, news like this just does not meet the same level of excitement that it would have back in say, 2010.

“It really reflects the state of cleantech now – people are struggling with ‘where did all the enthusiasm and energy go?’” says Mark Bunger, an analyst at Lux Research. “It is a natural part of how technology evolves. Initially there is a lot of hype, then you see a trough of disillusionment, followed by a plateau of interest.”

Bunger says all technologies tend to follow this pattern first identified by IT consultancy Gartner. It is called the hype cycle. Certainly, the last two years have been trough-like in the excitement level. After a certain number of years pass, when a company does prove that its technology works, it may be met with a bit of a shrug.

Gartner Hype Cycle

Gartner Hype Cycle. Credit: Wikipedia

To get out of the trough of disillusionment, according to the Gartner theory, requires surviving a shakeout where some technologies don’t prove themselves. Investments continue if the surviving firms show that early adopters are satisfied with the technology’s results. The two Genomatica news items show that the firm has likely passed this barrier.

To then climb the slope of enlightenment and get out of the trough, Genomatica will have to show more than one instance of the technology benefiting a large enterprise and commercialize second- and third-generation products. This is where Genomatica is heading with its partners.

The goal, in the end, is for mainstream adoption to take off (the Plateau of Productivity). Genomatica, and other producers of C4 chemicals, says that the shale gas boom will provide a timely market pull for their technologies. The reason? Petrochemical plants that use “light feedstocks” such as natural gas produce a much smaller ratio of C4 chemicals than facilities that use crude oil. We’ll find out in the next few years whether the tail-end of the biobased chemicals hype cycle will fit nicely with the peak of the shale gas hype cycle.

 

Big Companies Binging on Microbes

Microbes! They are tiny but powerful. And big companies are buying in – according to a wave of announcements that began late last week. Here are some highlights from my inbox.

Fuels

Amyris in Brazil

Amyris has begun production of biobased farnesene in Brazil

Amyris, which has long been talking about making biofuels – particularly diesel and jet fuel – from its biobased farnesene, will embark on a joint venture with French fuel company Total. Recently Amryis had pulled back from its fuel ambitions, but now it will move ahead with this 50/50 venture. Total is already an investor in Amyris and owns 18% of the firm’s commons stock. Where’s the microbe? Amyris uses engineered microbes to make farnesene from sugar.

Agriculture

Meanwhile, Monsanto and Novozymes will combine forces to develop and market biological crop products based on microbes. The deal includes a $300 million payment from Monsanto for access to Novozyme’s technology, which the firm has been building for the last seven years. Microbes have long been used as inoculates for nitrogen-fixing legume plants but in the last few years microbial products have been developed to help with phosophate uptake, to fight fungus and insects, and promote plant vigor and yield. Interestingly, Ag giant Monsanto only last year introduced a microbial platform. This deal sounds like a way to catch up.

Biobased chemicals

Some microbes can ferment gases and make desirable chemical intermediates. LanzaTech has been an innovator in this space so we’ll start with that company’s new deal with Evonik. The firms have a three-year research agreement to develop a route to biobased ingredients for specialty plastics. The feedstock will be synthesis gas (syngas) derived from waste. LanzaTech has already begun production at an earlier joint venture that produces ethanol from the industrial waste gases of a large steel mill in China.

Invista is probably best known for its synthetic fibers business (think Lycra and Coolmax) but it also has a chemical intermediates business. And it now has a deal with the UK Center for Process Innovation to develop gas fermentation technologies for the production of industrial chemicals such as butadiene. The two are eying waste gas from industry as a feedstock. Rather than spin the work as a sustainability play, Invista says it may significantly improve the cost and availability of several chemicals and raw materials that are used to produce its products.

 

Easy Holiday Shopping for Positive Solar News

The end of 2013 is shaping up to be merry for the solar industry. It’s been a tough few years – as European governments cut back on incentives, inventories of solar panels, cells, and even raw materials started to pile up. But all that is getting sorted out, and a bunch more positive news is starting to point to a happy 2014 and beyond.

Japan solar plant

A 70MW solar installation in Japan’s Kagoshima prefecture.

Demand for solar in China, Japan, the U.S. and even Europe has been strong since the summer. The pull has been felt througout the supply chain, but is not likely to be so strong that solar will become more expensive for end-users.

One sad tale this year has been a trade war between the developed home countries of some solar makers (in Europe and the U.S.) and China. But it looks like the compromise that the EU and China reached in July will stick, says Bloomberg. Perhaps those discussions will serve as a model for U.S.-China relations.

Speaking of the U.S., In October, 12 new solar installations accounted for 504 MW or 72.1 percent of all new electricity capacity last month. For the year, solar’s share is more like 21%. The Earthtechling blog digs into numbers from the Federal Energy Regulatory Commission.

Solar companies are sending positive signals to investors – and company stock has been soaring, points out Dana Blankenhorn at The Street.

At Lux Research, analyst Ed Cahill is taking a longer view. He says that solar will become competitive with natural gas by 2025, or if gas prices are between $4.90 and $9.30 MMBtu, perhaps as early as 2020. Apparently natural gas is a helpmate to solar – because using both together “can accelerate adoption and increase intermittent renewable penetration without expensive infrastructure improvements.”

Cahill says solar will become broadly competitive across the globe and that solar system prices will fall to $1.20 per W, from $1.96 per W in 2030 as modules get more efficient. One trend from the past will continue to dog the solar industry – as countries (and in the U.S., states) change policies, the industry will continue to see ups and downs. [Here's a press release about the report, along with a map]

M&G Paves the Way for Coke’s PlantBottle in China

Cleantech Chemistry thanks C&EN colleague Marc Reisch for contributing this news about biobased chemicals.

M&G Chemicals, a unit of Italy’s Gruppo Mossi & Ghisolfi, plans to build a $500 million biorefinery in China to make ethanol and the polyester raw material mono-ethylene glycol from 1 million metric tons of biomass per year. The facility in Fuyang, Anhui Province, China, will be four times larger than M&G’s recently commissioned Crescentino, Italy-based biorefinery when it is open in 2015.

To be built in a joint venture with minority partner Guozhen Group, a Chinese energy and real estate conglomerate, the Fuyang refinery will use Proesa technology from Beta Renewables, a joint venture partly owned by M&G which is also a polyethylene terephthalate maker.

M&G’s CEO Marco Ghisolfi says the Fuyang refinery “is the first act of a green revolution that M&G Chemicals is bringing to the polyester chain to provide environmental sustainability.” The company’s entry into China will ultimately position it to supply PET to firms such as beverage maker Coca-Cola which have advanced the development of renewably-sourced bottles, among them Coke’s own “PlantBottle.”

Coke currently buys ethanol-based ethylene glycol from India Glycols to make a PET bottle that is nearly 30% biomass derived. To increase feedstock availability, last year Coke formed a partnership with India’s JBF Industries to build a 500,000 metric-ton-per-year bio-ethylene glycol plant in Brazil, also set to open in 2015.

While the JBF plant will use sugarcane and sugarcane-processing waste as feedstock, M&G’s China facility will be based on wheat straw and corn stover. So M&G’s plant has the added virtue of depending on a non-food feedstock source.

But the ethics of using one feedstock crop versus another, or of using biomass versus petrochemical feedstocks, might not matter if consumers don’t care. At the BioPlastek Forum, a conference held in June, Coke, Ford Motor, and yogurt makers Danone and Stonyfield Farm told bioplastic makers that most consumers are unwilling to pay higher costs for bioplastics (C&EN, July 15, page 18).

And while the large M&G and JBF plant may have the economies of scale to drive down bio-based PET costs, they’ll encounter headwinds from petrochemical-based ethylene glycol makers. Lux Research senior analyst Andrew Soare points to the spate of ethylene and derivatives plants planned in the U.S. based on low-cost natural gas. M&G itself, for instance, is building a 1 million metric-ton-per-year PET polymer plant in Corpus Christi, Texas.

However, M&G will be challenged to make cost competitive ethylene glycol in China given the competition expected from U.S. petrochemical producers, Soare says.

Pyrolysis: the third way to biofuels

Imagine a giant pile of biomass – lets say wood chips for simplicity sake. And next to the wood chips is a big pile of money (likely from investors, whose patience for payback may vary). In a third pile is a group of job candidates: engineers, chemists & microbiologists.

To get useful energy from the first pile of feedstocks requires careful consideration of all your piles. The wood chips can be burned, fermented, or – bear with me now – squeezed. Each approach requires different amounts of feedstock, cash up front, and expertise to get a particular type and amount of fuel or energy.

C&EN’s own Craig Bettenhausen has taken a look at the benefits – and potential downsides – of squeezing the wood chips to make liquid fuels, specifically hydrocarbons that can be made into drop-in biofuels (the best kind!). Of course he doesn’t say “squeezing” – experts call it pyrolysis. Bettenhausen explains that the biomass is subjected to high temperature and pressure in an oxygen-free environment (imagining this is making me feel a little breathless and claustrophobic). Check out the free story to learn what happens next.

Meanwhile a press release from our friends at Battelle in Columbus, Ohio, nicely illustrates one way pyrolysis might pull ahead of other technologies (i.e., fermentation into ethanol or gasification into syngas). A group of Battelle engineers and scientists have built a mobile factory that can travel to the site of your big pile of wood chips and convert it into up to 130 gal of oily hydrocarbons per ton of chips per day. The little factory is installed on the flatbed trailer of an 18 wheeler.

“This feature makes it ideal to access the woody biomass that is often left stranded in agricultural regions, far away from industrial facilities,” the press release notes. “It’s potentially a significant cost advantage over competing processes represented by large facilities that require shipment of the biomass from its home site.”

Still, as Bettenhausen explains, pyrolysis – as it is being scaled up today – has not yet proven itself at scale or made profits for anyone. Stay tuned.

New Probe Aids Enzyme Mixology for Biofuels

What’s the difference between a bartender and a biofuels researcher? A bartender uses ethanol to make cocktails, while a biofuels researcher uses cocktails to make ethanol. Researchers at the Department of Energy’s Pacific Northwest National Lab have developed a probe to help create the most efficient cocktails for biofuels makers.

Trichoderma reesei

Trichoderma reesei, an enzyme powerhouse. Credit: Department of Energy

A biofuel-making cocktail is a blend of enzymes that break down biomass (like corn stalks). And apparently the fungus Trichoderma reesei is a veritable Swiss Army knife of enzymes.  T.E., as we’ll call it, is a mesophilic soft-rot fungus which was famous in World War II as the stuff that chewed through military tents in the Pacific Theater. It contains 200 sugar molecule busting enzymes (glycoside hydrolases) including 10 that chomp cellulose and 16 that consume hemicellulose. This variety is helpful, because no single enzyme can profitably make ethanol from cellulose.

To make biofuels, companies either make or purchase custom blends of enzymes that function at the needed pH, temperature, nutrient environment, and chemical conditions. Companies like Novozymes sell optimized blends of enzymes.

But with PNNL’s probes, cocktail DIY’ers can get in on the action. Currently, enzyme assays only show the total mixture activity of all enzymes, not the activity of individual enzymes. But the activity-based probe method quickly identifies and quantifies the activity of individual enzymes in a mixture, allowing high throughput analysis with gel electrophoresis or LC-MS-based proteomics. The research showed that the different processing conditions had a significant impact on the activity of individual enzymes. Armed with this knowledge, an enzyme mixologist would be able to more quickly identify the best ingredients for their biofuels process.

Reference [free download with registration at RSC]: Lindsey N. Anderson, David E. Culley, Beth A. Hofstad, Lacie M. Chauvigné-Hines, Erika M. Zink, Samuel O. Purvine, Richard D. Smith, Stephen J. Callister, Jon M. Magnuson and Aaron T. Wright, Activity-based protein profiling of secreted cellulolytic enzyme activity dynamics in Trichoderma reesei QM6a, NG14, and RUT-C30, Molecular BioSystems, Oct. 9, 2013, DOI: 10.1039/c3mb70333a.

Little Green Feedstocks

It sounds like something from a greenskeeper’s nightmare – certain folks have plans to grow algae and dandelions on purpose, and in large quantities.

Algenol's Paul Woods and his cyanobacteria. Credit: Algenol

Algenol’s Paul Woods and his cyanobacteria. Credit: Algenol

Firstly, in the golf course-choked state of Florida, Algenol CEO Paul Woods is scouting a location for a $500 million algae-to-fuels plant. The company was founded and has been operating in the southern part of the state for years now. Its claim to fame is cheap ethanol made from cyanobacteria in a custom-designed bioreactor. Woods does not, as far as I know, have plans to re-purpose stagnant water traps for the purpose of growing his feedstock.

But Florida, though it is sunny and warm, might have missed out on this slimy opportunity. In recent months, Woods questioned the state’s commitment to biofuels. For example, Governor Rick Scott repealed a state law requiring 10% ethanol in gasoline. But now, according to Fort Myers ABC 7 News, the company has been persuaded to build in its home state – apparently the estimated 1,000 jobs was just the ticket to getting a warmer welcome. Algenol needs to be sited near a major CO2 source (i.e., factory or power plant emissions) and says potential partners have come forward.

Meanwhile, it’s called the Russian Dandelion, though it grows in Germany. This common lawn scourge is bringing about not curses, but praise, for its rubber producing capability. Tire makers are enthused about its white latex sap. The goo is expected to give the subtropical rubber tree a bit of competition. Making rubber from dandelions is not a new idea, but has been given new life by a project at the Fraunhofer Institute for Molecular Biology and Applied Ecology.

Russian dandelions, growing in Germany. Credit: Fraunhofer Institute

Russian dandelions, growing in Germany. Credit: Fraunhofer Institute

Fraunhofer scientists, in a collaboration with folks from tire firm Continental are working on a production process for making tires from the dandelions. In addition to the manufacturing process, the researchers are also using DNA markers to grow new varieties of the plant with higher rubber yields.

The project sounds kind of cute but the researchers behind it are dead serious. The partners have already begun a pilot project and plans are afoot to move to industrial scale. According to them, the first prototype tires made from dandelion rubber will be tested on public roads over the next few years.

You can read an earlier post on the history of dandelion rubber here.

Gates Invests In KiOR, Elevance Coming to U.S.

Bill Gates (yes, that Bill Gates), through a fund called Gates Ventures, is investing $15 million in advanced biofuels firm KiOR. Gates is not a huge cleantech investor generally (though he has backed other firms such as the young MIT spin-off Liquid Metal Battery). So it’s rather interesting that he’s decided to invest in KiOR, which is not at all an “early stage” tech firm – in fact, it is a public company.

Vinod Khosla, a tech pioneer who is much more well known as a cleantech investor with deep pockets, has committed to putting in another $85 million to KiOR in debt and stock. Khosla was instrumental in the founding of the company and has been an unusually loyal and generous benefactor.

With this $100 million infusion, KiOR says it will be able to build out its capacity-doubling project at its Columbus, Miss. facility (see Khosla, Kior Double Down).

If we go back in time a bit to the end of the second quarter, we see that KiOR had started shipping its drop-in fuels (gasoline, diesel, heating oil) made from wood. But the amount of production was behind schedule, and its cash position was delicate, to say the least. At the time, analysts suggested that the firm should bring in a corporate partner such as a refining company. But that’s not what happened.

It is clearly good news for KiOR that it has a few friends who are willing to keep dipping in to their own pockets to make sure its first facility can reach the point where it generates enough cash to fund operations – and presumably prove out that KiOR’s next commercial facility (planned for Natchez, Miss.) will be profitable.

And its only fair to note that the same analysts who suggested KiOR get an additional large investor are also very bullish on the company. So what is there to like about KiOR?

  • KiOR has significantly increased uptime at the Columbus facility
  • It has produced and shipped actual product
  • Yields are rising
  • Drop-in biofuel is considered a much more desirable product than ethanol
  • KiOR’s technology can accommodate cheap feedstocks (the expansion will use waste railroad ties)

The main negative, in fact, was the near-term need for additional capital. And even back in August – before both recent investment announcements – analysts at Credit Suisse and Raymond James had an outperform rating on KiOR’s stock.

Does all of this mean that KiOR is a guaranteed win? No, of course not. But I find it interesting how far KiOR is poised to go with the help of a few true believers.

Elevance comes to the U.S.

Elevance is another cleantech firm that is expanding its commercial operations. The company makes specialty chemical intermediates – functionalized esters and the like – for use in downstream products for personal care, coatings, lubricants and additives. Its feedstock is vegetable oil, which it processes using olefin metathesis.

The company did not have an IPO, as KiOR did, but chose instead to raise private capital. Its first plant, in Gresik, Indonesia is a large one, at 180,000 metric tons per year. Elevance says that its output there is all spoken for, and it is now proceeding with plans to build a second plant, also in Natchez, Miss. That facility is expected to come online in 2016.