↓ Expand ↓

Category → Bio-based Chemicals

Learning to Like Natural Gas

This week’s cover story – Seeking Biomass Feedstocks That Can Compete – discusses the competition that natural gas might bring to the young renewable fuels and chemicals industry. [You can also check out the YouTube video about Energy Cane]

The story discusses one positive that the rise of natural gas brings to biobased chemical makers – at least those that produce C4 chemicals (i.e. butanediol, butadiene). As the chemical industry swaps petroleum feedstocks for natural gas, their processes will generate a much smaller ratio of C4 chemicals. Firms that rely on those intermediates will seek other sources of C4s.

gas well

Green companies are looking at natural gas. Credit: Chesapeake Energy

But there are a few other ways that the natural gas story intersects with the renewable industries – some obvious, and some not so obvious. One obvious way – cheaper energy from natural gas may help decrease operating costs at all chemical producers, including ones that use biomass feedstocks.

Less obvious – there is a group of renewable companies that use syngas as a feedstock. You know what makes an excellent syngas? Why, that’d be natural gas. Sure, you could gasify plant matter, old tires, construction debris, municipal waste (anything carbon based). Any of those feedstocks will make a flow of carbon monoxide and hydrogen. With chemical or biological catalysts, that syngas can be made into chemicals and fuels.

At least two firms that started out with plans to make syngas from biomass or waste sources now say they will ramp up on natural gas – Coskata, and Primus Green Energy. Coskata’s end product is ethanol, while Primus is targeting drop-in hydrocarbons. Presumably, with a working gasifier and catalysts, they could switch feedstocks whenever the cost basis dictates.

Newlight Technologies wants to make polymers from waste gases like methane from water treatment plants. But methane from under the ground would work well, too. The company says it can also make polymers from CO2 (with a helping hand from a hydrogen generator). Which brings us to…

BASF, which is not really a renewable company, but has got some irons in the fire. The chemical giant has a research project going to rip the hydrogen off of natural gas, and mix that with waste CO2 to make a custom-blended syngas. The firm says getting hydrogen this way is cheaper than other ways (tearing up water molecules, etc). Waste CO2 is something many industries – especially in Europe – would like to do something with. LanzaTech is also in the waste CO2 business. Not sure what its natural gas plans are.

Lastly, two stalwarts of the biobased chemicals industry, Genomatica and OPX Bio are getting a handle on natural gas. Genomatica is working with Waste Management to make C4s from syngas (derived from municipal waste). The syngas project came up in my interview with Genomatica’s CEO Christophe Schilling about natural gas.

More directly, OPX Bio, which is working to make acrylic acid from sugar,  has a lab-scale project for its second product – fatty acids. The company says its process can use syngas made from all the usual suspects including natural gas. There is already a significant market for chemicals based on fatty acids; they can also be converted into nice things like jet fuel.

Natural gas is not a renewable resource, so one might wonder why these green tech firms would bother using it at all. I can think of three reasons: one – as a first feedstock to prove one’s catalyst technology, two, as an alternate feedstock to balance price and availability of biomass or waste, and three, as a way to fix the mass-balance of hydrogens and carbons in your syngas. If adding 10% of syngas increases yields by 20%, that might be tempting.

There is one way that natural gas as a feedstock might be considered “green.” This comes via Alan Shaw of Calysta. The company uses methane munching bacteria to capture natural gas, then enzymes in the cells can make desired products. Shaw suggests a good use of the technology would be to install small-scale units where there is so-called “stranded” natural gas. That would include oil wells that flare the natural gas that comes up with the crude oil in places like North Dakota.

 

Choppin’ Broccoli

In the quest for chemicals and fuels made from biomass, there are a few important black boxes that make it difficult to compare different companies’ business models and likelihood of success. One of them is the process by which a particular facility obtains sugars from its biomass feedstock.

In many cases, the first step is expensive, but low-tech – chopping up the stuff. This is the part that reminds me of Choppin’ Broccoli, the Saturday Night Live song as performed by Dana Carvey. Since cellulosic ethanol is sort of an offshoot of corn ethanol, it’s helpful to imagine how different it is to process a corn cob or stalk or an entire sugar cane, compared to grinding up a starchy corn kernel. Getting sugar from cellulose is difficult enough, getting the cellulose away from the clutches of a plant’s lignin first requires heavy machinery to chop it into little pieces.

So say you have tidy chipped up pieces of biomass. What do you do then? Like the SNL song, it ain’t pretty. Generally it requires some combination of thermochemical assaults to get the sugar out. Steam, alkali-acid washes, and pricey enzymes… In an otherwise green business, the pretreatment steps use energy and possibly chemicals that you wouldn’t want to spill.

Since pretreatment of biomass has a lot to do with both costs and the yield of sugars from feedstock, it is a busy area of research. An article by Chris Hanson in the appropriately named Biomass Magazine delves into some intriguing ideas. To release the useful cellulose from lignin, researchers at University of Illinois at Urbana-Champaign and the U.S. DOE’s Joint BioEnergy Institute are investigating ionic liquids. Instead of using a traditional, two-stage alkali-acid pretreatment, a dose of butadiene sulfone got the job done in one step, according to U. of Illinois scientist Hao Feng. Another major benefit is that the butadiene sulfone can be recovered and recycled.

In California, the JBEI has been experimenting with imidazolium chloride. It has succesfully obtained sugar yields of 95% from mixed feedstocks and recycled 95% of the ionic liquid.

And a company called Leaf Energy has been studying a glycerol pretreatment method. Compared to acid pretreatments, the company says their method gets more sugars faster by dissolving lignin with a relatively inexpensive reagent with low temperature and standard pressure.

The goal with improving pretreatment steps is to bring down the cost of sugar from cellulose so that it is not more expensive than sugar from corn or sugar cane. Maybe if major cellulosic ethanol producers take up these technologies, we’ll have a better window into how they get the sugar out.

 

Biobased Chemicals: Some growing pains

Gevo, a maker of bio-based isobutanol, is now actually making isobutanol. It says something that a publicly-traded company has been not making its commercial product for some months. The problem was a bug in the production system – technically a microbe – a microbe other than the one (a yeast) that was supposed to be making isobutanol.

I spoke with Gevo’s CEO Pat Gruber yesterday at the BIO show in Montreal. He was rather forthright about what happened. First, they were running the plant at full scale with their own yeast and had their separation process running. They were producing truckloads of isobutanol. The facility had previously been an ethanol fermentation plant. With the new operating conditions, a dormant microbe sprang to life, contaminating the process. The product was still being made but the company decided to shut down the plant and decontaminate it.

“We had to identify the sources of the contaminant, change the pipes, sanitize the equipment, train the staff and modify the operating conditions to favor our yeast,” Gruber recounted. He emphasized that these plants are not sterile like a pharma plant would be. Instead, vectors of contamination are controlled so they stay at very low levels.

When I wrote about biobased chemicals last summer, analysts held out Gevo as an example of a success story. It was shortly after the story ran that Gevo stopped its process at its Luverne, Minn. plant due to problems with contamination. The episode shows the kind of growing pains that the industry and its followers are learning to anticipate and accept.

Other companies might face different kinds of growing pains – for Gevo there was what is called technical risk. Other firms are making chemicals such as biosuccinic acid. They also face a market risk because for most applications their product is not a drop in raw material, so downstream customers must adopt it.

This year is the tenth anniversary of the World Congress for Industrial Technology. Historically, it seems to take about a decade for a new chemical concept to reach commercialization, and then some more time to penetrate new markets. This makes 2013 a very interesting year for the biobased chemical industry.

Optimists at the BIO Show

I’m in Montreal today for the World Congress on Industrial Biotechnology – put on by the Biotechnology Industry Association. The soaking rain that threatened to drown my arrival on Sunday has given way to warmer weather with just a few threatening clouds. Similarly, the mood at the show is one of patient optimism.

This year is the show’s tenth anniversary and it is reported to be the largest one yet with 1200 attendees. There are actually seven tracks of breakout sessions which makes it rather difficult for this reporter to follow along.

The major change that I’ve noticed compared to my first show four years ago is in the content of the presentations. It used to be all about the super microbe – speakers would show off elaborate slides with metabolic pathways – they all looked like very complicated subway maps. Since then the industry has learned that microbes can build a lot, but they can’t build your business for you.

This year the subject matter is all about scale up and applications. The language is more MBA than MicroBio. Supply chains, value chains, financing, customers, joint ventures, IPOs. Of course by now any start-up with a microbe has learned by now if their business plan is worth money or not – and only those that answer yes are still here.

I’ve been told to expect some major announcements this morning so follow along with my tweets @MelodyMV if you want the dish. Yesterday Myriant said it got its bio succinic acid plant up and running in Lake Providence, LA. It will be ramping up tp 30 million lbs per year.

20130618-064241.jpg

Never Mind All That: Solar on the upswing

I’m going to have to start posting more frequently. My last post was about solar firms going bankrupt in China and now my cleantech news is about how solar is set to rebound. Seems like something should have happened in between that post and this one.

Actually, a few biobased chemical deals were announced. Thanks BASF and Evonik!

Stuttgart solar cell project

Making a better solar cell. Credit: University of Stuttgart Institute of Photovoltaics

Anyway – back to solar. Earlier this week, Lux Research (a rather skeptical gang generally) put out a summary of a new research report titled “Solar’s Great Recovery: Photovoltaics Reach $155 Billion Market in 2018.”

Actually, solar had a great 2012 – at last in the U.S. – but that was mainly due to installations of several large utility projects. The business of producing those solar modules had hit some major potholes. Around five years ago, solar demand was hindered by high prices – held up by shortages of key polysilicon raw material, but balanced by huge subsidies in Europe, especially in Spain and Germany. Then – in the nature of boom and bust cycles – the high prices prompted huge polysilicon capacity increases. Then prices fell, Europe cut subsides, the recession hit… and all that new capacity made solar prices tank and inventories piled up. Whew – what a tale.

In a fun new twist, according to Lux analyst Ed Cahill, the solar crisis will become a boon as record low prices boost demand. (And after that what will happen? Stay tuned).

The rise will take place as those cheaper installations (especially utility and commercial rooftop) become routine and spread into new markets. U.S., China, Japan, and India are expected to speed up installations. That will help to power (no pun intended) a compound annual growth rate in the industry of 10.5% over the next three years.

A few other things might help – according to this New York Times article, the U.S. and Europe are both working to smooth over trade disputes with China. Regional pricing schemes may take the place of tariffs. China had been accused of exporting solar modules at prices less than the cost of production (a practice called “dumping”). China, in turn, accused polysilicon makers in the U.S. and Europe of doing the same thing.

All of this fun news is not likely to help revive solar module manufacturing in the U.S. or in Germany. But new technology might. My colleague Alex Scott flagged a news item from the University of Stuttgart’s Institute for Photovoltaics. Researchers there have tested a crystalline silicon solar cell with a 22% sunlight conversion efficiency. It is difficult to say how much a module made of these cells would convert, but a traditional module is normally around 15%.

The secret to the team’s work is a design that puts the metal contacts on the back layer of the cell, using a laser. While hanging out on the back of the cell, the material will not block light hitting the front of the cell. Ta-da! More electrons.

 

 

Natural Gas and Cleantech

Cleantech fans: it is time to educate yourselves. Set aside for a moment your interest in wind energy, solar, bio-based chemicals, biofuels, and electric vehicles and read this week’s story about what the U.S. may do with its abundant natural gas.

Here are some things that the country can do with natural gas: it can make electricity, upgrade it to useful chemicals, use it as a transportation fuel, or export it. The U.S. has access to so much natural gas that it could do all four things. And do them all cheaply, and profitably compared to our trade partners.

At this point, even if you only use your knowledge about the promise of cleantech at cocktail parties, you should start to think about the impact of abundant natural gas on your favorite technologies.

My colleagues Jeff Johnson and Alex Tullo’s feature asks what effect DOE policies on liquefied natural gas exports might have on the chemical industry and the wider economy. The flip question – not addressed in the story — is what impact natural gas that stays in the U.S. will have on the competitiveness of renewable energy and materials innovations.

At the recent ARPA-E show, I saw energy technology that is seeking to take advantage of abundant natural gas – and the speakers at the conference were rather fixated on the topic. (see my story on the ARPA-E Show in this week’s issue). Alert readers will recognize which minority member of the Senate appears in both articles.

I hate to give away the ending of the natural gas story but (spoiler alert!) U.S. natural gas prices will stay low even if we ramp up exports. When I was in school and my class learned about the Panama Canal, one of my classmates couldn’t understand why engineers had to build locks to compensate for the different sea levels between the Pacific and Atlantic. Once you connected the two oceans, wouldn’t they level out? Well, no.

Similarly, there is a small aperture through which natural gas would escape U.S. borders via the export market. Liquification imposes a significant surcharge on every unit of gas, it costs a lot to build a plant to do it, the export hubs need to be brought online, and there is a backlog in approving facilities. But read the full story and get the full picture.

Qteros: Back from the Dead?

Cleantech Chemistry HQ got an interesting e-mail yesterday. It stated that Qteros, an industrial biotech start-up of yore, has resurfaced. The firm had officially closed down earlier this year “because of adverse market conditions.”

Qteros’ technology was – and is – based on what the founders call the Q microbe. This critter is a two-in-one biofactory. It chomps down on biomass and also ferments the sugars into ethanol. It seemed that the firm’s microbe was well regarded, but the path to commercialization was murky. Cleantech Chemistry earlier reported that the firm was regrouping and maybe looking for a buyer.

That buyer, it turned out, was to be three of the company’s original founders. The firm was a tech spin off of the U. of Mass. Amherst. Original COO – and now CEO – Stephan Rogers of Amherst says “Having examined all the research, we now see an immediate pathway to commercialization with the current technology. The company is going to pursue a new and different, less capital-intensive business model. Part of our strategy to quickly get to market is to partner with others who have deep experience in microbial research to help us jump-start the process.”

Also at Amherst and still on the company’s scientific advisory board is Susan Leschine, who discovered the Q microbe. Qteros’ connection to the school will remain very cozy, it appears from the press release. It seems that the developers will move in with fellow researchers and will not seek out their own lab or office space until sometime in mid 2013. So it may be a little while before we hear more about the road forward.

 

The Year in Cleantech IPOs: Horrible!

There is no other way to say it. This year has been a terrible one for cleantech firms hoping to access the public markets to fund commercialization. Investors seem to be allergic to the very idea of owning stock in a cleantech firm.

Cleantech Chemistry thinks that one might still squeak through before the end of the year – SolarCity just slashed its offering price and number of shares and may now raise $92 million in an upcoming IPO, down from an initial expectation of $151 million. New York Times Dealbook blog has the details. [Update: CC was correct - SolarCity is live and trading up]

SolarCity is not pushing some obscure technology – it buys industry standard solar panels, and leases them to residential homeowners. This business model has become a common way for homeowners to get around the high up-front costs involved in generating their own power.

Should SolarCity decide instead to withdraw its IPO, it will join a long list of cleantech firms that had second thoughts this year including BrightSource Energy (solar), Enerkem, Fulcrum Bioenergy, Coskata, Elevance, Genomatica (all biofuels and biochemicals), and Smith Electric Vehicles. (Hat tip to Cleantech Group for helping with the list).

The good news is that many of these firms are successfully raising money from private investors including venture capitalists, corporate partners, bankers, and the Federal Government (sometimes in combination as when a loan guarantee is offered from DOE or USDA).

Two firms did go public in 2012, though both raised less money than originally hoped. Ceres, a plant biotechnology company focusing on proprietary energy crops, and Enphase, a maker of a new type of solar inverter, clipped their wings a bit but made it out of the gate.

Moving to the New Year, the true effect of a lost year for IPOs may be mainly one of image. True believers will continue to invest in cleantech firms, but for the general investing public, it seems that the bloom is off the rose for pre-commercial companies in the sector. That means fewer stakeholders to help spread the risk of new technologies, and increasing competition to appeal to deep pocketed private investors such as chemical firms and oil and gas giants.